Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light.

نویسندگان

  • J M Mason
  • P Setlow
چکیده

Bacillus subtilis strains containing deletions in the genes coding for one or two of the major small, acid-soluble spore proteins (SASP; termed SASP-alpha and SASP-beta) were constructed. These mutants sporulated normally, but the spores lacked either SASP-alpha, SASP-beta, or both proteins. The level of minor SASP did not increase in these mutants, but the level of SASP-alpha increased about twofold in the SASP-beta- mutant, and the level of SASP-beta increased about twofold in the SASP-alpha- mutant. The growth rates of the deletion strains were identical to that of the wild-type strain in rich or poor growth media, as was the initiation of spore germination. However, outgrowth of spores of the SASP-alpha(-)-beta- strain was significantly slower than that of wild-type spores in all media tested. The heat resistance of SASP-beta- spores was identical to that of wild-type spores but slightly greater than that of SASP-alpha- and SASP-alpha(-)-beta- spores. However, the SASP-alpha- and SASP-alpha(-)-beta- spores were much more heat resistant than vegetative cells. The UV light resistances of SASP-beta- and wild-type spores were also identical. However, SASP-alpha(-)-beta- spores were slightly more sensitive to UV light than were log-phase cells of the wild-type or SASP-alpha(-)-beta- strain (the latter have identical UV light resistances); SASP-alpha- spores were slightly more UV light resistant than SASP-alpha(-)-beta- spores. These data strongly implicate SASP, in particular SASP-alpha, in the UV light resistance of B. subtilis spores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins.

Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance.

متن کامل

Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins.

Dormant spores of a Bacillus subtilis mutant that lacks two major small, acid-soluble spore proteins are very sensitive to UV irradiation, which in spores generates about half the amount of thymine-containing dimers formed by comparable irradiation of vegetative cells. Irradiation of mutant spores also produces spore photoproducts, but again only about one-half the amount formed in comparably i...

متن کامل

Effect of a small, acid-soluble spore protein from Clostridium perfringens on the resistance properties of Bacillus subtilis spores.

Alpha/beta-type small, acid-soluble spore proteins (SASP) are essential for the resistance of DNA in spores of Bacillus species to damage. An alpha/beta-type SASP, Ssp2, from Clostridium perfringens was expressed at significant levels in B. subtilis spores lacking one or both major alpha/beta-type SASP (alpha- and alpha- beta- strains, respectively). Ssp2 restored some of the resistance of alph...

متن کامل

Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions.

Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

متن کامل

Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment.

The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via alpha/beta-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and alpha/beta-type SASP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 167 1  شماره 

صفحات  -

تاریخ انتشار 1986